离散数学(Discrete mathematics)是大学计算机专业最重要的必修课程之一,是许多计算机专业课程的基础。组合数学是研究图论、密码学、编码理论、算法复杂性的基本数学工具。离散数学研究基于离散空间而非连续空间的数学结构。与光滑变化的实数不同,离散数学的研究对象——例如整数、图和数学逻辑中的命题——不是光滑变化的,而是拥有不等、分立的值。因此离散数学不包含微积分和分析等"连续数学"的内容。离散对象经常可以用整数来枚举。更一般地,离散数学被视为处理可数集合的数学分支。 (与整数子集基数相同的集合,包括有理数集但不包括整数集)。但是,“离散数学”不存在准确且普遍认可的定义。实际上,离散数学经常被定义为不包含连续变化量及相关概念的数学,甚少被定义为包含什么内容的数学。
学历 | 学校名称 | 学校英文名 | 国家 | ![]() |
---|